LogoLogo
  • 1. Introducing Mei
  • 2. User Experience (UX) Overview
  • Backend Architecture
    • 3-1. PandaV2 SDK
    • 3-2. MCP Layer Architecture
    • 3-3. Blockchain Loader Structure
    • 3-4. LLM Optimization Structure
  • __
    • 4. MeiLand - GPU Development Environment
Powered by GitBook
On this page
  • Overview
  • Core Architecture Design
  • Intent Recognition and Understanding
  • Task Decomposition and Planning
  • Path Optimization Algorithms
  • Intelligent Learning and Adaptation
  • Real-Time Optimization Mechanisms
  • Error Handling and Recovery
  • Security and Privacy Protection
  • Advanced AI Features
  1. Backend Architecture

3-4. LLM Optimization Structure

Overview

The LLM Optimization Structure is the core brain of Mei's intelligent decision-making, responsible for translating users' natural language into precise blockchain operations. This system functions like an experienced investment advisor who not only understands what you say, but also comprehends what you haven't voiced. Through multi-layered intelligent analysis and optimization algorithms, it ensures every user request is executed in the most efficient and secure manner possible.

Core Architecture Design

Multi-Stage Processing Pipeline

Natural Language Input
    ↓
Intent Recognition & Analysis
    ↓
Context Understanding & Memory
    ↓
Task Decomposition & Planning
    ↓
Path Optimization & Selection
    ↓
Execution Monitoring & Adjustment
    ↓
Result Feedback & Learning

Intelligent Decision Engine

Employs a layered decision architecture, from simple rule matching to complex machine learning inference.

Intent Recognition and Understanding

Multi-Dimensional Intent Analysis

Not only analyzes what users say, but understands what users want.

Intent Classification System

interface IntentAnalysis {
  // Primary intent category
  primaryIntent: {
    category: 'query' | 'transaction' | 'analysis' | 'management' | 'learning';
    confidence: number;
    subcategory: string;
  };
  
  // Implicit intents
  implicitIntents: {
    riskTolerance: 'conservative' | 'moderate' | 'aggressive';
    timeHorizon: 'immediate' | 'short_term' | 'long_term';
    investmentGoal: 'profit' | 'learning' | 'diversification';
  };
  
  // Sentiment analysis
  sentiment: {
    overall: 'positive' | 'neutral' | 'negative';
    urgency: number; // 0-1
    confidence_level: number; // 0-1
  };
}

Context Awareness

Understanding conversation context to provide coherent service experience:

class ContextManager {
  private conversationHistory: ConversationTurn[] = [];
  private userProfile: UserProfile;
  private sessionContext: SessionContext;
  
  analyzeContext(userInput: string): ContextAnalysis {
    return {
      referencedEntities: this.extractEntityReferences(userInput),
      temporalContext: this.analyzeTimeReferences(userInput),
      conversationFlow: this.analyzeConversationFlow(),
      userState: this.inferUserState()
    };
  }
  
  private inferUserState(): UserState {
    // Infer user's current state based on conversation history
    const recentInteractions = this.getRecentInteractions(5);
    return {
      knowledgeLevel: this.assessKnowledgeLevel(recentInteractions),
      currentFocus: this.identifyCurrentFocus(recentInteractions),
      emotionalState: this.analyzeEmotionalProgression(recentInteractions)
    };
  }
}

Task Decomposition and Planning

Intelligent Task Decomposition

Breaking down complex user requests into executable atomic operations.

Decomposition Strategy

interface TaskDecomposition {
  async decomposeComplexTask(userIntent: UserIntent): Promise<TaskPlan> {
    // 1. Identify core task
    const coreTask = this.identifyCoreTask(userIntent);
    
    // 2. Analyze dependencies
    const dependencies = this.analyzeDependencies(coreTask);
    
    // 3. Generate execution plan
    const executionPlan = this.generateExecutionPlan(coreTask, dependencies);
    
    // 4. Optimize execution order
    const optimizedPlan = this.optimizeExecutionOrder(executionPlan);
    
    return optimizedPlan;
  }
}

Parallelization Analysis

Identify tasks that can be executed in parallel to improve overall efficiency:

class ParallelizationOptimizer {
  identifyParallelTasks(tasks: Task[]): ParallelExecutionPlan {
    const dependencyGraph = this.buildDependencyGraph(tasks);
    const parallelGroups = this.groupIndependentTasks(dependencyGraph);
    
    return {
      sequentialStages: parallelGroups.map(group => ({
        parallelTasks: group,
        estimatedTime: Math.max(...group.map(task => task.estimatedDuration))
      })),
      totalEstimatedTime: this.calculateTotalTime(parallelGroups)
    };
  }
}

Path Optimization Algorithms

Multi-Objective Optimization

Finding the optimal balance between execution efficiency, cost control, and risk management.

Optimization Objective Weights

interface OptimizationObjectives {
  speed: number;        // Execution speed weight
  cost: number;         // Cost control weight  
  reliability: number;  // Reliability weight
  privacy: number;      // Privacy protection weight
}

class MultiObjectiveOptimizer {
  optimizeExecutionPath(
    availablePaths: ExecutionPath[],
    objectives: OptimizationObjectives,
    userConstraints: UserConstraints
  ): OptimizedPath {
    // Calculate composite score for each path
    const scoredPaths = availablePaths.map(path => ({
      path,
      score: this.calculateCompositeScore(path, objectives)
    }));
    
    // Apply user constraints
    const feasiblePaths = scoredPaths.filter(
      scored => this.satisfiesConstraints(scored.path, userConstraints)
    );
    
    // Select optimal path
    return this.selectOptimalPath(feasiblePaths);
  }
}

Dynamic Path Adjustment

Adjust paths in real-time based on current conditions during execution:

class DynamicPathAdjuster {
  async monitorAndAdjust(executionContext: ExecutionContext): Promise<void> {
    while (!executionContext.isComplete()) {
      const currentMetrics = await this.collectRealTimeMetrics();
      
      if (this.shouldAdjustPath(currentMetrics)) {
        const newPath = await this.recalculateOptimalPath(
          executionContext.remainingTasks,
          currentMetrics
        );
        
        await this.applyPathAdjustment(executionContext, newPath);
      }
      
      await this.wait(1000); // Check every second
    }
  }
}

Intelligent Learning and Adaptation

User Behavior Learning

Continuously optimize service quality by observing user behavior patterns.

Learning Model

interface UserLearningModel {
  // Preference learning
  preferences: {
    tradingStyle: 'conservative' | 'balanced' | 'aggressive';
    preferredTokens: string[];
    riskTolerance: number;
    timePreferences: TimePattern[];
  };
  
  // Behavior patterns
  behaviorPatterns: {
    decisionSpeed: number;        // Decision-making speed
    informationDepth: number;     // Information depth preference
    followUpFrequency: number;    // Follow-up attention frequency
  };
  
  // Feedback learning
  feedbackHistory: {
    satisfactionScores: number[];
    commonComplaints: string[];
    successfulInteractions: InteractionPattern[];
  };
}

Personalization Optimization

Adjust service strategies based on learned user characteristics:

class PersonalizationEngine {
  async personalizeResponse(
    userModel: UserLearningModel,
    standardResponse: Response
  ): Promise<PersonalizedResponse> {
    // Adjust information detail level
    const informationLevel = this.determineInformationLevel(userModel);
    
    // Adjust risk warning intensity
    const riskWarningLevel = this.calculateRiskWarningLevel(userModel);
    
    // Personalized recommendations
    const recommendations = await this.generatePersonalizedRecommendations(userModel);
    
    return {
      ...standardResponse,
      informationLevel,
      riskWarningLevel,
      personalizedRecommendations: recommendations
    };
  }
}

Real-Time Optimization Mechanisms

Performance Monitoring and Tuning

Continuously monitor system performance and automatically adjust optimization strategies.

Performance Metrics Tracking

interface PerformanceMetrics {
  responseTime: {
    intentRecognition: number;
    taskPlanning: number;
    pathOptimization: number;
    execution: number;
  };
  
  accuracy: {
    intentAccuracy: number;
    executionSuccess: number;
    userSatisfaction: number;
  };
  
  efficiency: {
    resourceUtilization: number;
    parallelizationRatio: number;
    cacheHitRate: number;
  };
}

Adaptive Tuning

class AdaptiveTuner {
  async optimizeSystemParameters(metrics: PerformanceMetrics): Promise<void> {
    // Adjust concurrency based on response time
    if (metrics.responseTime.execution > this.responseTimeThreshold) {
      await this.increaseConcurrency();
    }
    
    // Adjust model parameters based on accuracy
    if (metrics.accuracy.intentAccuracy < this.accuracyThreshold) {
      await this.refineIntentModel();
    }
    
    // Adjust cache strategy based on resource utilization
    if (metrics.efficiency.cacheHitRate < this.cacheThreshold) {
      await this.optimizeCacheStrategy();
    }
  }
}

Error Handling and Recovery

Intelligent Error Diagnosis

Not only identify errors, but understand their root causes.

interface ErrorDiagnosis {
  errorType: 'user_input' | 'system_internal' | 'blockchain_network' | 'external_service';
  severity: 'low' | 'medium' | 'high' | 'critical';
  rootCause: string;
  suggestedRecovery: RecoveryStrategy[];
  userFriendlyExplanation: string;
}

class IntelligentErrorHandler {
  async diagnoseAndRecover(error: Error, context: ExecutionContext): Promise<RecoveryResult> {
    // Diagnose error
    const diagnosis = await this.diagnoseError(error, context);
    
    // Select recovery strategy
    const recoveryStrategy = this.selectRecoveryStrategy(diagnosis);
    
    // Execute recovery
    const recoveryResult = await this.executeRecovery(recoveryStrategy, context);
    
    // Learn and improve
    await this.learnFromError(diagnosis, recoveryResult);
    
    return recoveryResult;
  }
}

Graceful Degradation

When system issues occur, gracefully degrade service rather than complete failure.

class GracefulDegradation {
  async handleServiceDegradation(serviceLevel: ServiceLevel): Promise<DegradedResponse> {
    switch (serviceLevel) {
      case 'full_service':
        return await this.provideFullService();
      
      case 'limited_service':
        return await this.provideLimitedService();
      
      case 'basic_service':
        return await this.provideBasicService();
      
      case 'emergency_mode':
        return await this.provideEmergencyResponse();
    }
  }
}

Security and Privacy Protection

Sensitive Information Handling

Protecting user privacy and sensitive information during LLM processing.

class PrivacyProtection {
  async sanitizeInput(userInput: string): Promise<SanitizedInput> {
    // Identify sensitive information
    const sensitiveEntities = await this.identifySensitiveEntities(userInput);
    
    // Replace or mask sensitive information
    const sanitizedText = this.maskSensitiveData(userInput, sensitiveEntities);
    
    // Preserve necessary context for processing
    const preservedContext = this.preserveNecessaryContext(sensitiveEntities);
    
    return {
      sanitizedText,
      preservedContext,
      sensitiveEntities
    };
  }
}

Advanced AI Features

Predictive Analytics

Anticipate user needs and market conditions:

interface PredictiveAnalytics {
  // Market prediction
  predictMarketTrends(timeframe: string): Promise<MarketPrediction>;
  
  // User behavior prediction
  predictUserActions(userHistory: UserHistory): Promise<ActionPrediction[]>;
  
  // Risk prediction
  predictRiskEvents(portfolio: Portfolio): Promise<RiskPrediction>;
  
  // Opportunity identification
  identifyOpportunities(context: MarketContext): Promise<Opportunity[]>;
}

Advanced Reasoning

Complex reasoning capabilities for sophisticated analysis:

class AdvancedReasoning {
  async performChainOfThought(
    query: string,
    context: ReasoningContext
  ): Promise<ReasoningResult> {
    // Break down complex reasoning into steps
    const reasoningSteps = await this.decomposeReasoning(query);
    
    // Execute each reasoning step
    const stepResults = [];
    for (const step of reasoningSteps) {
      const result = await this.executeReasoningStep(step, context);
      stepResults.push(result);
      context = this.updateContext(context, result);
    }
    
    // Synthesize final conclusion
    return this.synthesizeConclusion(stepResults);
  }
}

Continuous Learning

Self-improving system that learns from interactions:

interface ContinuousLearning {
  // Model fine-tuning
  fineTuneModel(feedback: UserFeedback[]): Promise<ModelUpdate>;
  
  // Pattern recognition
  discoverNewPatterns(interactions: Interaction[]): Promise<Pattern[]>;
  
  // Knowledge graph expansion
  expandKnowledgeGraph(newInformation: Information[]): Promise<void>;
  
  // Adaptation to market changes
  adaptToMarketConditions(marketData: MarketData): Promise<AdaptationResult>;
}

The LLM Optimization Structure's design philosophy is "intelligent yet controllable." Through multi-layered intelligent analysis and optimization, Mei can provide human-like service experiences while ensuring every decision is explainable and controllable. This system continuously learns and evolves, but always keeps the user's best interests as its core objective.

Previous3-3. Blockchain Loader StructureNext4. MeiLand - GPU Development Environment

Last updated 9 days ago