3-4. LLM Optimization Structure
Overview
The LLM Optimization Structure is the core brain of Mei's intelligent decision-making, responsible for translating users' natural language into precise blockchain operations. This system functions like an experienced investment advisor who not only understands what you say, but also comprehends what you haven't voiced. Through multi-layered intelligent analysis and optimization algorithms, it ensures every user request is executed in the most efficient and secure manner possible.
Core Architecture Design
Multi-Stage Processing Pipeline
Natural Language Input
↓
Intent Recognition & Analysis
↓
Context Understanding & Memory
↓
Task Decomposition & Planning
↓
Path Optimization & Selection
↓
Execution Monitoring & Adjustment
↓
Result Feedback & Learning
Intelligent Decision Engine
Employs a layered decision architecture, from simple rule matching to complex machine learning inference.
Intent Recognition and Understanding
Multi-Dimensional Intent Analysis
Not only analyzes what users say, but understands what users want.
Intent Classification System
interface IntentAnalysis {
// Primary intent category
primaryIntent: {
category: 'query' | 'transaction' | 'analysis' | 'management' | 'learning';
confidence: number;
subcategory: string;
};
// Implicit intents
implicitIntents: {
riskTolerance: 'conservative' | 'moderate' | 'aggressive';
timeHorizon: 'immediate' | 'short_term' | 'long_term';
investmentGoal: 'profit' | 'learning' | 'diversification';
};
// Sentiment analysis
sentiment: {
overall: 'positive' | 'neutral' | 'negative';
urgency: number; // 0-1
confidence_level: number; // 0-1
};
}
Context Awareness
Understanding conversation context to provide coherent service experience:
class ContextManager {
private conversationHistory: ConversationTurn[] = [];
private userProfile: UserProfile;
private sessionContext: SessionContext;
analyzeContext(userInput: string): ContextAnalysis {
return {
referencedEntities: this.extractEntityReferences(userInput),
temporalContext: this.analyzeTimeReferences(userInput),
conversationFlow: this.analyzeConversationFlow(),
userState: this.inferUserState()
};
}
private inferUserState(): UserState {
// Infer user's current state based on conversation history
const recentInteractions = this.getRecentInteractions(5);
return {
knowledgeLevel: this.assessKnowledgeLevel(recentInteractions),
currentFocus: this.identifyCurrentFocus(recentInteractions),
emotionalState: this.analyzeEmotionalProgression(recentInteractions)
};
}
}
Task Decomposition and Planning
Intelligent Task Decomposition
Breaking down complex user requests into executable atomic operations.
Decomposition Strategy
interface TaskDecomposition {
async decomposeComplexTask(userIntent: UserIntent): Promise<TaskPlan> {
// 1. Identify core task
const coreTask = this.identifyCoreTask(userIntent);
// 2. Analyze dependencies
const dependencies = this.analyzeDependencies(coreTask);
// 3. Generate execution plan
const executionPlan = this.generateExecutionPlan(coreTask, dependencies);
// 4. Optimize execution order
const optimizedPlan = this.optimizeExecutionOrder(executionPlan);
return optimizedPlan;
}
}
Parallelization Analysis
Identify tasks that can be executed in parallel to improve overall efficiency:
class ParallelizationOptimizer {
identifyParallelTasks(tasks: Task[]): ParallelExecutionPlan {
const dependencyGraph = this.buildDependencyGraph(tasks);
const parallelGroups = this.groupIndependentTasks(dependencyGraph);
return {
sequentialStages: parallelGroups.map(group => ({
parallelTasks: group,
estimatedTime: Math.max(...group.map(task => task.estimatedDuration))
})),
totalEstimatedTime: this.calculateTotalTime(parallelGroups)
};
}
}
Path Optimization Algorithms
Multi-Objective Optimization
Finding the optimal balance between execution efficiency, cost control, and risk management.
Optimization Objective Weights
interface OptimizationObjectives {
speed: number; // Execution speed weight
cost: number; // Cost control weight
reliability: number; // Reliability weight
privacy: number; // Privacy protection weight
}
class MultiObjectiveOptimizer {
optimizeExecutionPath(
availablePaths: ExecutionPath[],
objectives: OptimizationObjectives,
userConstraints: UserConstraints
): OptimizedPath {
// Calculate composite score for each path
const scoredPaths = availablePaths.map(path => ({
path,
score: this.calculateCompositeScore(path, objectives)
}));
// Apply user constraints
const feasiblePaths = scoredPaths.filter(
scored => this.satisfiesConstraints(scored.path, userConstraints)
);
// Select optimal path
return this.selectOptimalPath(feasiblePaths);
}
}
Dynamic Path Adjustment
Adjust paths in real-time based on current conditions during execution:
class DynamicPathAdjuster {
async monitorAndAdjust(executionContext: ExecutionContext): Promise<void> {
while (!executionContext.isComplete()) {
const currentMetrics = await this.collectRealTimeMetrics();
if (this.shouldAdjustPath(currentMetrics)) {
const newPath = await this.recalculateOptimalPath(
executionContext.remainingTasks,
currentMetrics
);
await this.applyPathAdjustment(executionContext, newPath);
}
await this.wait(1000); // Check every second
}
}
}
Intelligent Learning and Adaptation
User Behavior Learning
Continuously optimize service quality by observing user behavior patterns.
Learning Model
interface UserLearningModel {
// Preference learning
preferences: {
tradingStyle: 'conservative' | 'balanced' | 'aggressive';
preferredTokens: string[];
riskTolerance: number;
timePreferences: TimePattern[];
};
// Behavior patterns
behaviorPatterns: {
decisionSpeed: number; // Decision-making speed
informationDepth: number; // Information depth preference
followUpFrequency: number; // Follow-up attention frequency
};
// Feedback learning
feedbackHistory: {
satisfactionScores: number[];
commonComplaints: string[];
successfulInteractions: InteractionPattern[];
};
}
Personalization Optimization
Adjust service strategies based on learned user characteristics:
class PersonalizationEngine {
async personalizeResponse(
userModel: UserLearningModel,
standardResponse: Response
): Promise<PersonalizedResponse> {
// Adjust information detail level
const informationLevel = this.determineInformationLevel(userModel);
// Adjust risk warning intensity
const riskWarningLevel = this.calculateRiskWarningLevel(userModel);
// Personalized recommendations
const recommendations = await this.generatePersonalizedRecommendations(userModel);
return {
...standardResponse,
informationLevel,
riskWarningLevel,
personalizedRecommendations: recommendations
};
}
}
Real-Time Optimization Mechanisms
Performance Monitoring and Tuning
Continuously monitor system performance and automatically adjust optimization strategies.
Performance Metrics Tracking
interface PerformanceMetrics {
responseTime: {
intentRecognition: number;
taskPlanning: number;
pathOptimization: number;
execution: number;
};
accuracy: {
intentAccuracy: number;
executionSuccess: number;
userSatisfaction: number;
};
efficiency: {
resourceUtilization: number;
parallelizationRatio: number;
cacheHitRate: number;
};
}
Adaptive Tuning
class AdaptiveTuner {
async optimizeSystemParameters(metrics: PerformanceMetrics): Promise<void> {
// Adjust concurrency based on response time
if (metrics.responseTime.execution > this.responseTimeThreshold) {
await this.increaseConcurrency();
}
// Adjust model parameters based on accuracy
if (metrics.accuracy.intentAccuracy < this.accuracyThreshold) {
await this.refineIntentModel();
}
// Adjust cache strategy based on resource utilization
if (metrics.efficiency.cacheHitRate < this.cacheThreshold) {
await this.optimizeCacheStrategy();
}
}
}
Error Handling and Recovery
Intelligent Error Diagnosis
Not only identify errors, but understand their root causes.
interface ErrorDiagnosis {
errorType: 'user_input' | 'system_internal' | 'blockchain_network' | 'external_service';
severity: 'low' | 'medium' | 'high' | 'critical';
rootCause: string;
suggestedRecovery: RecoveryStrategy[];
userFriendlyExplanation: string;
}
class IntelligentErrorHandler {
async diagnoseAndRecover(error: Error, context: ExecutionContext): Promise<RecoveryResult> {
// Diagnose error
const diagnosis = await this.diagnoseError(error, context);
// Select recovery strategy
const recoveryStrategy = this.selectRecoveryStrategy(diagnosis);
// Execute recovery
const recoveryResult = await this.executeRecovery(recoveryStrategy, context);
// Learn and improve
await this.learnFromError(diagnosis, recoveryResult);
return recoveryResult;
}
}
Graceful Degradation
When system issues occur, gracefully degrade service rather than complete failure.
class GracefulDegradation {
async handleServiceDegradation(serviceLevel: ServiceLevel): Promise<DegradedResponse> {
switch (serviceLevel) {
case 'full_service':
return await this.provideFullService();
case 'limited_service':
return await this.provideLimitedService();
case 'basic_service':
return await this.provideBasicService();
case 'emergency_mode':
return await this.provideEmergencyResponse();
}
}
}
Security and Privacy Protection
Sensitive Information Handling
Protecting user privacy and sensitive information during LLM processing.
class PrivacyProtection {
async sanitizeInput(userInput: string): Promise<SanitizedInput> {
// Identify sensitive information
const sensitiveEntities = await this.identifySensitiveEntities(userInput);
// Replace or mask sensitive information
const sanitizedText = this.maskSensitiveData(userInput, sensitiveEntities);
// Preserve necessary context for processing
const preservedContext = this.preserveNecessaryContext(sensitiveEntities);
return {
sanitizedText,
preservedContext,
sensitiveEntities
};
}
}
Advanced AI Features
Predictive Analytics
Anticipate user needs and market conditions:
interface PredictiveAnalytics {
// Market prediction
predictMarketTrends(timeframe: string): Promise<MarketPrediction>;
// User behavior prediction
predictUserActions(userHistory: UserHistory): Promise<ActionPrediction[]>;
// Risk prediction
predictRiskEvents(portfolio: Portfolio): Promise<RiskPrediction>;
// Opportunity identification
identifyOpportunities(context: MarketContext): Promise<Opportunity[]>;
}
Advanced Reasoning
Complex reasoning capabilities for sophisticated analysis:
class AdvancedReasoning {
async performChainOfThought(
query: string,
context: ReasoningContext
): Promise<ReasoningResult> {
// Break down complex reasoning into steps
const reasoningSteps = await this.decomposeReasoning(query);
// Execute each reasoning step
const stepResults = [];
for (const step of reasoningSteps) {
const result = await this.executeReasoningStep(step, context);
stepResults.push(result);
context = this.updateContext(context, result);
}
// Synthesize final conclusion
return this.synthesizeConclusion(stepResults);
}
}
Continuous Learning
Self-improving system that learns from interactions:
interface ContinuousLearning {
// Model fine-tuning
fineTuneModel(feedback: UserFeedback[]): Promise<ModelUpdate>;
// Pattern recognition
discoverNewPatterns(interactions: Interaction[]): Promise<Pattern[]>;
// Knowledge graph expansion
expandKnowledgeGraph(newInformation: Information[]): Promise<void>;
// Adaptation to market changes
adaptToMarketConditions(marketData: MarketData): Promise<AdaptationResult>;
}
The LLM Optimization Structure's design philosophy is "intelligent yet controllable." Through multi-layered intelligent analysis and optimization, Mei can provide human-like service experiences while ensuring every decision is explainable and controllable. This system continuously learns and evolves, but always keeps the user's best interests as its core objective.
Last updated